More PHP with PHP 5

Derick Rethans
Table of Contents

191100 o 11 Tox £ o o 1
Object MOodel Changesottt e e e e e e
CONSITUCH/DESITUCE ottt et et et e

(D= = 1= £ o oo
B OB I ONS . . o oottt e
NS DaCESottt e
ADOUL tNE AULNOT

Introduction

Since the introduction of PHP 4 in 1999 a lot of feature requests have been made, most notably for the OO sup-
port of PHP. With PHP 5 these wishes finally seem to be realized in the form of a revamped Object Oriented
model. The new model handles objects itself in a more natural way, and there are a number of additions, such as
support for overloading, access modifiers, namespaces and exceptions. All of these will be explained in the text
below.

Object Model Changes

One of the most important changes is the way objects are handled. In Zend Engine 1 (the engine that powers
PHP 4.x) objects are always copied by-value, which duplicates the object. Y ou could work around it by specifi-
cally using references everywhere, but that got nasty pretty fast.

With Zend Engine 2 (the engine version in PHP 5) objects are always passed by reference (actually, the handle
to the object is passed, not the object itself) and thus there is more inituitive object handling. Let's demonstrate
this with an example; the first shows how objects are passed around with Zend Engine 1.

Example 1. Passing objectsto functionswith PHP 4

<?php
cl ass exanpl el {
var $nane;

functi on change_name($obj ect, $nanme) {
$obj ect - >nane = $nane;

$obj = new exanpl el();
$obj - >nane = "PHP 4";
change_nane($obj, "PHP 5");
echo $obj ->nane."\n";

?>

The example above will NOT print "PHP 5", but instead it will echo "PHP 4". This is because the object $obj
will be copied when it is passed to the function change_name(). In order to 'fix' this, you will need to mark the
object parameter to the function as passing-by-reference with the '&" sign. The function declaration then looks
like this:

1

<?php
functi on change_name(&obj ect, $nane) {
$obj ect - >nane = $nane;

?>

With PHP 5 and Zend Engine 2 this will no longer be needed. The first listing will work as expected and display
"PHP 5". Although thisis one of the most important changes, the object model in PHP 5 has tons of other new
features, a sample follows.

Construct/Destruct

Zend Engine 2 introduces a new way to specify contructors, and aso implements destructors. Where in Zend
Engine 1 the constructor of the class was a method with the same name as that class, in Zend Engine 2 it be-
comes a special method (note the ' prefix): __construct for the constructor, and __destruct for the
destructor.

You might wonder what the reason for this change is, but it's pretty obvious actualy. If you want to rename
your class, for instance, you don't have to find your constructor and change it's name. Another example of its
usefulness becomes apparent when you are extending a parent class. You can aways cal par-
ent::___construct toexecutethe parent's constructor in your inherited class.

Implementing the destructor was made possible because objects are now manipulated through handles, and it is
easy to count how many references there are to an object - unlike in PHP 4 where it was virtually impossible to
track how often an object was referenced because there were usually so much copies around. See the next exam-
ple on constructors and destructors.

Example 2. Constructors and Destructors

<?php
class car {
publ i c $nane;

function _ construct ($nane) {
$t hi s- >nane = $nane;
echo "constructor ran!'\n";

function _ destruct() {
echo "destructor ran, nane = {$this->nane}!\n"

}
$obj = newcar('dio');
$obj - >name = ' Twi ngo' ;

unset ($obj) ;
echo "end!'\ n";
?>

Which outputs:

constructor ran! _
destructor ran, name = Tw ngo
end!

In order for older PHP 4 based scripts to work, the new Zend Engine will still honor a constructor with the same
name as its class. If both thismethod and __const r uct are present PHP 5 will use the latter asit's construc-
tor.

PPP

The three P's represent the three different protection levels of methods and properties: Public, Protected and Pri-
vate. These three modifiers can be used instead of the PHP 4 modifier var for properties, or they can be
prepended to f unct i on in method declarations.

publ i c isequivalent to using var for properties, and is the default access level for methods. When something
ismarked publ i c it can be accessed by any other class or function:

Example 3. The dirty way

<?php
cl ass engine {
function giveGas () {
echo "vrooom '\ n";
}

}

cl ass car extends engine {
publ i c $wheel s;

function drive() {
) $t hi s->gi veGas() ;

function setWieel s($count) {
if ($count == 3 || $count == 4) {
$t hi s- >wheel s = $count;
}

}

$obj = new car();

$obj - >wheel s = 3;

$obj - >gi veGas() ;
?>

Which outputs:

vroom !

Of course thisis not what you want! For a start, you don't usually want to instruct the car to 'giveGas, but rather
the engine. This means you need to disallow direct execute access to the gi veGas method, but alow it when it
is called from the extended class (through the dr i ve method). Thisiswhat the pr ot ect ed isfor. If we mod-
ify the definition of the gi veGas method to:

protected function giveGas () {
echo "vrooonm '\ n";

then you cannot use $obj - >gi veGas() anymore, but must call the method through the dr i ve method of
thecar class.

However, thisis still not enough, as you can still set the number of wheels to something other than 3 or 4 by
modifying the property instead of using the set Wheel s method which ensures with a check that car can only
have 3 or 4 whedls. Thisiswhere pri vat e isuseful. By marking the wheel s property aspri vat e, theonly
modification that will be accepted comes through calling the set Wheel s method. Here is the new updated
code, with added modifiers:

Example 4. public, protected and private modifiers

<?php

?>

cl ass engine {
protected function give@s () {
echo "vrooom '\ n";

}

cl ass car extends engine {
private $wheels;

public function drive() {
$t hi s- >gi veGas();
}

public function setWeel s($count) {
if ($count == 3 || $count == 4) {
$t hi s- >wheel s = $count;
}

}

$obj = new car();
$obj - >set Wheel s(3);
$obj ->drive();

Setters and Getters

When you have some sort of generic class that stores configuration data, you usually want to control which data
can be set and don't want to allow the 'users' of your class to write directly to the properties. PHP 5 allows you
to define__set and __get functions which are called for properties that you access, but which don't exist in

the class definition.

The following example shows how to use 'setters' and 'getters' to control the access to a specified set of 'proper-

ties which are stored in the conf i g property of your class (which is of course a private property).

Example 5. Overloaded properties

<?php

class config {
protected $dat a;

function __get($nane)

return isset($this->data[$nane]) ? $this->data[$nane] : 'not set'

function __set($name, $val ue) {

if (in_array($nane, array('path', 'base_dir',

$t hi s- >dat a[$nane] = $val ue
return TRUE;

} else {
return FALSE;

}

$cfg = new config();

$cfg->path = "/honme/ httpd/ htm";
$cfg->base_dir = "/foo";
$cfg->mage_dir = "/inmges";

“admin_dir'))) {

echo $cfg->path. $cfg->base_dir. "\n";
echo $cfg->admin_dir. "\n";
?>

Which outputs:

/ hore/ ht t pd/ ht m / f oo
not set

Clone

In PHP4, if you wanted to pass objects by value to a function you didn't need to do anything as it was done by
default. Because this default behaviour changed in PHP 5 to pass-by-reference, you might need to change your
code if you were counting on your objects being copied if you passed them to a function. There are two waysto
get the old behaviour back. The first is to make the setting zend2. i npl i cit _cl one = 1;theotheristo
clone your object yourself. If your class provides aspecial ¢l one method, that will be called rather than the
default clone method which simply copies the object's properties to the clone. If you specify your own method,
the properties of the orginal object can be accessed with the $t hat pseudo-aobject, and you can store the new
datain the cloned $t hi s object.

In the example below we specify our own ¢l one method to set the properties of the cloned object.

Example 6. __clone

<?php
cl ass counter {
public $id; /* Not unique */
publ i c $wi ndows;
public $doors;

function __clone() {
$t hi s- >doors = $t hat - >door s;
$t hi s- >wi ndows = $t hat - >wi ndows;
$this->d = $that->id + 1;

}
}
$0 = new counter();
$0->id = 1;

$02 = $0->__clone();
echo $02->id. "\n";
?>

Which outputs:

Dereferencing

If in PHP 4 amethod call returned an object, and you wanted to call a method on the returned object, you had to
do so in two steps:

<?php
$obj = $f oo->bar();
echo $obj ->bar _too();
?>

With PHP 5 you don't need to do this anymore, as you can directly use the returned object to call a method
from:

<?php
echo $foo->bar ()->bar_too();
?>

In addition to this, the dereferencing will work on overloaded objects, for example Java objects, or COM com-
ponents.

Exceptions

Exceptions are usually seen as a vital part of an OO model. PHP 5 features a base exception class "Exception”,
which implements some basic functions.

The constructor itself accepts up to two parameters. The first is the nessage, the second the errorcode. The
base exception class implements four functions: get Message, which returns the message if it was passed to
the contructor; get Code, which returns the errorcode if it was passed; get Li ne, which returns the line num-
ber on which the exception was thrown; and get Fi | e for the filename on which the exception was thrown.

Hereis an example of how to throw and catch exceptions:

Example 7. Built-in Exception

<?php
try {
t hr ow new Exception(' Sonet hi ng went wong!', 9);
} catch (Exception $e) {
echo "Exception ". $e->getCode(). ": ". $e->get Message()."\n\t"
echo "on ". $e->getFile(). ":". $e->getLine(). "\n";
?> '
Which outputs:

Exception 9: Something went w ong!
on /home/ httpd/ htm /test/exception.php:3

If you want you can also define your own exception classes; they do not need to be extended from the Exception
base class, although that might be the most logical thing to do. If, for example, you want to catch FilelO errors
separately you can define your own Filel OException class:

Example 8. User Defined Exception

<?php
define(' FILENAME , '/tnp/doesntexist');

class Filel CException extends Exception {

function __construct($desc, $filenane) {
$t hi s->message = $desc
$this->filename = $fil enane;

}

function getFil ename() {
return $this->fil enane;

{
$fp = @open(FILENAME, 'r');
if (!$fp)

t hrow new Fi |l el OException("Couldn't open file!", FlILENAME)

}
} catch (Filel OException $e) {
echo "Fil el CException: ". $e->get Message(). ": ". $e->getFilenanme(). "\n";

?>

Which outputs:

Fil el OException: Couldn't open file!l: /tnp/doesntexist

If you fail to catch an exception, you will get a message similiar to:

Fatal error: Uncaught exception 'fileioexception'! in Unknown on line O

Namespaces

The last thing that we'll cover is namespaces. Namespaces enable you to pack several classes and/or functions
together into alogical group and help you to solve naming conflicts. Namespace are declared with the nanes-
pace keyword. The example below shows how to encapsulates class variables, a class wide constant, a function
and a class and how to use those from your script.

Example 9. Namespace

<?php
nanespace exanpl e {
var $class_var = 'var';
const class_const = 'const';

function printBar() {
echo "bar\n";
class testl {
static function printFoo() {

echo "foo\n";

public function printBaz() {
echo "baz\n";

}

echo exanpl e:: $cl ass_var. "\ n";
echo exanpl e::class_const."\n";

exanpl e: :printBar();
exanpl e::testl::printFoo();

$test = new exanple::testl();

$t est - >print Baz();
?>

Outputs:

var
const

bar
foo
baz

This concludes the short introduction to the new object model, for the latest changes to the still moving Zend
Engine 2 please refer to the ZEND CHANGE file, which can be found online
[http://cvs.php.net/cvs.php/ZendEngine2/ZEND_CHANGES?0gin=2].

About the author

Derick Rethans [http://www.derickrethans.nl/] provides solutions for Internet related problems. Working in his
own company, JDI Media Solutions he has acquired vast experience with PHP related projects. He has con-
tributed in a number of ways to the PHP project, including the mcrypt extension, bug fixes, additions and lead-
ing the QA team. In his spare time he likes to work on SRM: Script Running Machine and Xdebug, watch
movies and travel. Y ou can reach him at d.rethans@jdimedia.nl.

http://cvs.php.net/cvs.php/ZendEngine2/ZEND_CHANGES?login=2
http://www.derickrethans.nl/
http://www.derickrethans.nl/

	More PHP with PHP 5
	Table of Contents
	Introduction
	Object Model Changes
	Construct/Destruct
	PPP
	Setters and Getters
	Clone
	Dereferencing
	Exceptions
	Namespaces
	About the author

