faqts : Science : Mathematics : Algebra : Linear

+ Search
Add Entry AlertManage Folder Edit Entry Add page to http://del.icio.us/
Did You Find This Entry Useful?

14 of 22 people (64%) answered Yes
Recently 5 of 10 people (50%) answered Yes

Entry

Math: Matrix: Eigenvector: Eigenvalue: Operation: Calculate: How to: 3 x 3 matrix

Jan 21st, 2006 16:56
Knud van Eeden,


----------------------------------------------------------------------
--- Knud van Eeden --- 15 January 2021 - 02:36 pm --------------------
Math: Matrix: Eigenvector: Eigenvalue: Operation: Calculate: How to: 3 
x 3 matrix
===
Steps: Overview:
 1. -Given the eigenvector equation
      -   -            -
      A . x = lambda . x
            -
 2. -Choose A to be a 3 x 3 matrix
 3. -Writing this in components
     [ a11 a12 a13 ]
     [             ]     -             -
     [ a21 a22 a23 ]  .  x  = lambda . x
     [             ]
     [ a31 a32 a33 ]
 4. -Writing this out further
   [ a11 a12 a13 ]   [ x1 ]     [ lambda  0       lambda ]     [ x1 ]
   [             ]   [    ]     [                        ]     [    ]
   [ a21 a22 a23 ] . [ x2 ]  =  [ 0       lambda  0      ]  .  [ x2 ]
   [             ]   [    ]     [                        ]     [    ]
   [ a31 a32 a33 ]   [ x3 ]     [ 0       0       0      ]     [ x3 ]
 5. -Working this out, according to the vector rules,
     gives 3 equations
a11 . x1 + a12 . x2 + a13 . x3= lambda . x1 + 0      . x2 + 0      . x3
a21 . x1 + a22 . x2 + a23 . x3= 0      . x1 + lambda . x2 + 0      . x3
a31 . x1 + a32 . x2 + a33 . x3= 0      . x1 + 0      . x2 + lambda . x3
 6. -Put everything on one side of the equation
    (a11 - lambda) . x1 +  a12           . x2 +  a13           . x3 = 0
     a21           . x1 + (a22 - lambda) . x2 +  a23           . x3 = 0
     a31           . x1 +  a32           . x2 + (a33 - lambda) . x3 = 0
 7. -Or thus
   [ a11 - lambda   a12           a13          ]   [ x1 ]     [ 0 ]
   [                                           ]   [    ]     [   ]
   [ a21            a22 - lambda  a23          ] . [ x2 ]  =  [ 0 ]
   [                                           ]   [    ]     [   ]
   [ a31            a32           a33 - lambda ]   [ x3 ]     [ 0 ]
 8. -This equation will only be generally true if the determinant is
     zero
                    -
     (as the vector x is in general not zero)
 9. -Thus you have to work out the equation that the determinant is
     zero.
   | a11 - lambda   a12           a13          |
   |                                           |
   | a21            a22 - lambda  a23          | = 0
   |                                           |
   | a31            a32           a33 - lambda |
10. Working that equation out (according to the determinant rules)
    shows that you will need to solve an 3th degree polynomial in the
    unknown lambda.
    + ((a11 - lambda) . (((a22 - lambda) . (a33 - lambda)) - (a23 . 
a32))) - ((a12) . ((a21 . (a33 - lambda)) - (a23 . a31))) + (a13 . 
((a21 . a32) - ((a22 - lambda) . a31))) = 0
11. Working out the parenthesis (according to the rules of algebra) and
    rewriting the order of the terms in this 3nd degree polynomial (of
    a similar structure to e.g. 6 . x^3 + 3 . x^2 + 5 . x + 4 = 0) in
    the variable lambda gives
     -lambda^3  + (a11 + a22 + a33) . lambda^2  + (-a22 . a33 + a12 . 
a21 - a22 . a11 - a11 . a33 + a23 . a32 + a31 . a13) . lambda + (a23 . 
a12 . a31 + a32 . a21 . a13 - a12 . a21 . a33 + a22 . a11 . a33 - 
a23 . a32 . a11 - a22 . a31 . a13) = 0
12. Making the sign of the highest degree positive, for esthetic 
purposes, gives
     lambda^3  - (a11 + a22 + a33) . lambda^2  + (a22 . a33 - a12 . 
a21 + a22 . a11 + a11 . a33 - a23 . a32 - a31 . a13) . lambda + (- 
a23 . a12 . a31 - a32 . a21 . a13 + a12 . a21 . a33 - a22 . a11 . a33 
+ a23 . a32 . a11 + a22 . a31 . a13) = 0
13. Solving this 3rd degree polynomial
     (similar as in a . x^3 + b . x^2 + c . x + d = 0)
    in this special case here
      a = 1
      b = - (a11 + a22 + a33)
      c = (a22 . a33 - a12 . a21 + a22 . a11 + a11 . a33 - a23 . a32 - 
a31 . a13)
      d = (- a23 . a12 . a31 - a32 . a21 . a13 + a12 . a21 . a33 - 
a22 . a11 . a33 + a23 . a32 . a11 + a22 . a31 . a13)
     for the unknown lambda always gives exactly 3 solutions (according
     to the fundamental theorem of algebra).
     ---
     This gives in general the solution for all 3 eigenvalues of the
     3rd degree eigenvalue equation.
     ---
     You can solve this equation exact using the Cardano formula, or
     otherwise using numerical methods.
14. Solving for the eigenvectors
    Steps: Overview:
    1. -Given the original system of linear equations
      [ a11 - lambda   a12           a13          ]   [ x1 ]     [ 0 ]
      [                                           ]   [    ]     [   ]
      [ a21            a22 - lambda  a23          ] . [ x2 ]  =  [ 0 ]
      [                                           ]   [    ]     [   ]
      [ a31            a32           a33 - lambda ]   [ x3 ]     [ 0 ]
    2. Do the matrix multiplication to get the 3 linear equations
   (a11 - lambda) . x1 +  a12           . x2 +  a13           . x3 = 0
    a21           . x1 + (a22 - lambda) . x2 +  a23           . x3 = 0
    a31           . x1 +  a32           . x2 + (a33 - lambda) . x3 = 0
    3. -Remove (arbitrarily) one of the equations
        (say the first equation)
    a21           . x1 + (a22 - lambda) . x2 +  a23           . x3 = 0
    a31           . x1 +  a32           . x2 + (a33 - lambda) . x3 = 0
    4. -Select one of the variables (say the first variable, x1)
    5. -Divide by that variable (say that that variable x1 is not zero)
    a21           . x1 + (a22 - lambda) . x2 +  a23           . x3 = 0
                    --                    --                    --   --
                    x1                    x1                    x1   x1
    a31           . x1 +  a32           . x2 + (a33 - lambda) . x3 = 0
                    --                    --                    --   --
                    x1                    x1                    x1   x1
    6. Work this out
    a21                + (a22 - lambda) . x2 +  a23           . x3 = 0
                                          --                    --
                                          x1                    x1
    a31                +  a32           . x2 + (a33 - lambda) . x3 = 0
                                          --                    --
                                          x1                    x1
    7. -Solve this 2 linear equations for this new variables
        x2
        --
        x1
        and
        x3
        --
        x1
     8. -This gives as a solution
    x2              a31 . a23 - a33 . a21 + lambda . a21
    -- = -------------------------------------------------------------
    x1                                                   2
         a22 . a33 - a22 . lambda - lambda . a33 + lambda  - a23 . a32
    x3              a21 . a32 - a22 . a31 + lambda . a31
    -- = -------------------------------------------------------------
    x1                                                   2
         a22 . a33 - a22 . lambda - lambda . a33 + lambda  - a23 . a32
     9. -Possibly multiply nominator and denominator of
         the solution quotient with some multiple m
         (because a scaled version of the eigenvector is also
          a solution). This will give the eigenspace for that
          specific eigenvalue.
    10. -Possibly normalize the magnitudes of the eigenvectors, by
         making it a unit vector, as usual by dividing by its length
                 2     2     2
         sqrt( x1  + x2  + x3  )
---
---
Internet: see also:
---
Math: Transformation: Eigenvector: Eigenvalue: Link: Can you give an 
overview of links?
http://www.faqts.com/knowledge_base/view.phtml/aid/39001/fid/1856
----------------------------------------------------------------------