Entry
Math: Matrix: Eigenvalue: Operation: Calculate:How to: 3 x 3 matrix: Example:[[1 2 3][4 5 6][7 8 9]]
Jan 15th, 2006 12:10
Knud van Eeden,
----------------------------------------------------------------------
--- Knud van Eeden --- 15 January 2021 - 04:39 pm --------------------
Math: Matrix: Eigenvalue: Operation: Calculate:How to: 3 x 3 matrix:
Example:[[1 2 3][4 5 6][7 8 9]]
===
Steps: Overview:
1. -Given the eigenvector equation
- - -
A . x = lambda . x
-
2. -Choose A to be a 3 x 3 matrix
3. -Or thus written in components
[ a11 a12 a13 ]
[ ] - -
[ a21 a22 a23 ] . x = lambda . x
[ ]
[ a31 a32 a33 ]
-
4. -Here the matrix A is given to be
[ 1 2 3 ]
[ ]
[ 3 4 5 ]
[ ]
[ 6 7 8 ]
5. -Or thus
[ 1 2 3 ]
[ ] - -
[ 4 5 6 ] . x = lambda . x
[ ]
[ 7 8 9 ]
6. -Or thus you have to solve the equation, determinant equals zero
| 1 - lambda 2 3 |
| |
| 4 5 - lambda 6 | = 0
| |
| 7 8 9 - lambda |
7. To find lambda, the eigenvalue, or thus the scaling factor with
which the eigenvector is multiply, you need to solve this 2nd
degree polynomial where here thus given the components
a11 = 1
a12 = 2
a13 = 3
a21 = 4
a22 = 5
a23 = 6
a31 = 7
a32 = 8
a33 = 9
8. The characteristic polynomial
lambda^3 - (a11 + a22 + a33) . lambda^2 - (-a22 . a33 + a12 .
a21 - a22 . a11 - a11 . a33 + a23 . a32 + a31 . a13) . lambda - (a23 .
a12 . a31 + a32 . a21 . a13 - a12 . a21 . a33 + a22 . a11 . a33 -
a23 . a32 . a11 - a22 . a31 . a13) = 0
becomes thus here
lambda^3 - (1 + 5 + 9) . lambda^2 - (-5 . 9 + 2 . 4 - 5 . 1 -
1 . 9 + 6 . 8 + 7 . 3) . lambda + (6 . 2 . 7 + 8 . 4 . 3 - 2 . 4 . 9 +
5 . 1 . 9 - 6 . 8 . 1 - 5 . 7 . 3) = 0
or thus worked out
lambda^3 - 15 . lambda^2 - 18 . lambda = 0
9. This 3rd degree polynomial has thus exactly 3 solutions
1. -Using the exact Cardano formula or numeric methods to find the
corresponding lambda gives the 3 solutions for lambda:
lambda1 = 0
lambda2 = 15/2 + 3/2 . sqrt(33) = 16.11684397...
lambda3 = 15/2 - 3/2 . sqrt(33) = -1.116843971...
The 3 eigenvalues, or scale factors of the eigenvectors, equal
thus
0, 16.11684397... and -1.116843971
===
To check this goto e.g.
http://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert.htm
and fill in
1 2 3
3 4 5
6 7 8
---
---
Internet: see also:
---
Math: Transformation: Eigenvector: Link: Can you give an overview of
links?
http://www.faqts.com/knowledge_base/view.phtml/aid/39001/fid/1856
----------------------------------------------------------------------