Entry
Math: Matrix: Eigenvector: Eigenvalue: Property: Can you give some properties of eigenvalues?
Jan 21st, 2006 18:36
Knud van Eeden,
----------------------------------------------------------------------
--- Knud van Eeden --- 17 January 2021 - 00:31 am --------------------
Math: Matrix: Eigenvector: Eigenvalue: Property: Can you give some
properties of eigenvalues?
Properties of the found eigenvalues:
===
-Different to each other
If the eigenvalues are real and different to each other, then it can
be proved that
the the N linear equations are linearly independent
(use the Wronskian determinant to verify this linear independence.
If this gives non-zero this means independence)
[book: Edwards, Charles Henry / Penney, David E. - differential
equations and boundary value problems / Computing and modeling - p.
278 'Distinct real eigenvalues']
===
-Perpendicularity
The eigenvectors for different to each other eigenvalues are
perpendicular to each other
(this is simular to saying that the N linear equations are linearly
independent)
[book: Bronshtein, I. N. / Semendyayev, K. A. - handbook of
mathematics - page 150 'Eigenvectors belonging to distinct eigenvalues
of a symmetric matrix are mutually orthogonal']
[book: Golab, Stanislav - tensor calculus - p. 125 'The eigenvalues
of a tensor']
[book: Kibble, T. W. B. - classical mechanics - p. 321]
[book: Slater, John C. / Frank, Nathaniel H. - mechanics - p.
275 '... show that the vectors so found are orthogonal...']
===
-Symmetry
All the eigenvalues for a symmetric matrix are real
---
[book: Bronshtein, I. N. / Semendyayev, K. A. - handbook of
mathematics - page 150 'All the eigenvalues for a symmetric matrix are
real']
---
Note:
As any inertia tensor is symmetric (because the products of inertia,
e.g. xy versus yx, xz versus zx, occur in symmetric positions) thus
all the eigenvalues are real in that case
===
-Sum
The sum of the eigenvalues equals the trace (=sum of the values on
the diagonal of the given determinant) of the given matrix A.
(you can use this property e.g. to check the found values of your
eigenvalues, and or to find the last eigenvalues if you all the
others but one).
---
e.g. if given a 2 x 2 matrix A then
lambda1 + lambda2 = (trace of the given 2 x 2 matrix A)
---
e.g. if given a 3 x 3 matrix A then
lambda1 + lambda2 + lambda3 = (trace of the given 3 x 3 matrix A)
...
e.g. if given a N x N matrix A then
lambda1 + lambda2 + lambda3 + ... + lambdaN = (trace of the given N
x N matrix A)
---
[book: Bronshtein, I. N. / Semendyayev, K. A. - handbook of
mathematics - p. 150 'Eigenvalues and eigenvectors']
[book: Strang, Gilbert - introduction to applied mathematics - p.
51 'Eigenvalues and dynamical systems']
[video lecture: Strang, Gilbert - Eigenvectors and eigenvalues]
===
-Product
The product of the eigenvalues equals the determinant of the given
matrix A
---
e.g. if given a 2 x 2 matrix A then
lambda1 . lambda2 = (determinant of the given 2 x 2 matrix A)
---
e.g. if given a 3 x 3 matrix A then
lambda1 . lambda2 . lambda3 = (determinant of the given 3 x 3
matrix A)
---
e.g. if given a N x N matrix A then
lambda1 . lambda2 . lambda3 . ... . lambdaN = (determinant of the
given N x N matrix A)
---
[book: Bronshtein, I. N. / Semendyayev, K. A. - handbook of
mathematics - p. 150 'Eigenvalues and eigenvectors']
[book: Strang, Gilbert - introduction to applied mathematics - p.
51 'Eigenvalues and dynamical systems']
---
---
Internet: see also:
---
Math: Transformation: Eigenvector: Eigenvalue: Link: Can you give an
overview of links?
http://www.faqts.com/knowledge_base/view.phtml/aid/39001/fid/1856
----------------------------------------------------------------------